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The shapes of open and closed random walks: a l / d  expansion 

George Gasparit, Joseph Rudnickf and Arezki BeldjennaS 
t Department of Physics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA 
f Department of Physics, University of California, Los Angeles, Los Angeles, CA 90024, 
USA 

Received 23 October 1986 

Abstract. A new technique for calculating the shapes of random walks is presented. The 
method is used to derive an exact analytical expression for the asphericity of an unrestricted 
closed or ring walk embedded in d spatial dimensions. A graphical procedure is developed 
to systematise a I / d  series expansion for the individual principal radii of gyration and 
their respective probability distribution functions P( R i ) (  1 G i s  d ) .  The average principal 
radii of gyration are calculated to O ( l / d * )  for both open and closed walks, and selected 
terms in the l / d  expansion are summed to all orders in l / d  in the determination of P ( R f ) .  
This leads to an explicit analytical form for P (R f )  for open walks. The distribution of the 
largest eigenvalue is compared with a distribution obtained from numerical simulations of 
walks in three dimensions. The agreement between the two is extremely good. Other 
predictions for various parameters that characterise the average shape of open and closed 
walks in three dimensions are also found to agree remarkably well with the results of 
simulations, the error being of the order of 5%. 

1. Introduction 

A quantitative measure of the shapes of polymers has been of interest to physical 
chemists for over fifty years. Kuhn (1934) was the first to recognise that the average 
spatial configurations of polymers in dilute solutions over short time periods were 
highly anisotropic and that isotropy was acquired over long times through orientational 
averaging. The anisotropy of polymers has important physical consequences and is 
critical in the interpretation of viscous flows and other hydrodynamical phenomena 
of dilute solutions of macromolecules (Kramers 1946). Since Kuhn’s pioneering work, 
a large number of researchers have developed useful analytical and numerical tech- 
niques leading to important insights regarding the average shapes of polymers (Solc 
and Stockmeyer 1971, Solc 1971, 1973, Mazur et af 1973, Rubin and Mazur 1977, 
Bishop and Michel 1985, Theodorou and Suter 1985, Aronovitz and Nelson 1986). 

In these studies, the bending configurations of the long, flexible polymers are 
represented by an equivalent-size trail left by a random walker. Excluded volume 
effects are incorporated by requiring the walk to be self-avoiding. Chain polymers 
containing a large number of monomers are in the same universality class as random 
walks with a large number of steps, and both are modelled equally well by the discrete 
or lattice random walk and the continuous, random flight version. A useful parameter 
quantifying the average deviation from spherical symmetry of a walk is the asphericity, 
Ad (Rudnick and Gaspari 1986, see also Theodorou and Suter 1985, Aronovitz and 
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Nelson 1986). For walks embedded in d spatial dimensions, Ad is defined by 

where R f  ( i  = 1 , .  . . , d )  are the squares of the principal components of the radius of 
gyration of the walk and the angular brackets stand for an average over the ensemble 
of N-step walks. Although the random walk, being a simple example of a random 
fractal, has no precisely defined shape, the asphericity turns out to be a useful single 
measure of the gross shape for two reasons. First, the average anisotropy of the trail, 
as quantified by the parameter Ad,  survives orientational averaging, and second, the 
asphericity, as defined by equation ( l . l ) ,  is a quantity which is amenable to analysis 
whereas the principal radii of gyration themselves apparently are not. Indeed, for 
ideal or unrestricted linear random walks, exact analytical expansions for the asphericity 
have been obtained in arbitrary dimensions by both Rudnick and Gaspari (1986) and 
by Aronovitz and Nelson (1986). In the case of self-avoiding walks, Aronovitz and 
Nelson (1986) have calculated the first-order term in an E = 4 - d interdimensional 
expansion of Ad. Their results indicate that the self-avoiding corrections to the shapes 
of unrestricted walks are small. More recently, Aronovitz and Stephen (1987) have 
successfully applied the theory in an investigation of shapes of two other kinds of 
random fractals: percolation clusters and lattice animals. The anisotropy of these 
objects has also been calculated to first order in an E expansion. They are found to 
be highly anisotropic, as first noted by Family et a1 (1985) who used numerical methods. 
They are less so, however, than polymers. 

A promising new analytical approach to the problem of polymer shapes has recently 
been developed by us (Rudnick et a1 1987). Exploiting the fact that walks taking place 
in high spatial dimensionalities are almost all of one kind, we have been able to obtain 
the first two terms in a l / d  expansion for the individual principal radii of gyration 
for an ideal random walk in d dimensions. This paper reports significant advances in 
the analysis of shapes of random walks and we present a number of new results for 
the average dimensions and anisotropies of open and closed random walks. We develop 
a l / d  expansion for the shapes of both of these entities that can be carried out 
straightforwardly to arbitrarily high order. Among the results is an exact analytical 
expression for the asphericity of a ring polymer without excluded volume in arbitrary 
dimensions. We find, for rings, Ad = ( d  + 2 ) /  (5d  + 2 )  whereas for linear chains Ad was 
previously calculated to be Ad = 2(d  + 2 ) / ( 5 d  +4) .  The agreement between the exact 
expression and the numerical findings recently reported by Bishop and Saltiel (1986) 
for two, four and five dimensions is quite good. A detailed comparison is listed in 
table 1 .  The computer simulations of these authors indicate that ring polymers are 
more spherical than their linear counterparts in the same dimension and, moreover, 
that the asphericity decreases with increasing dimensionality for both linear and ring 
chains. Both findings are in agreement with our result. 

Table 1. Ad for ring polymers: comparison of equation (2.22) with the numerical calcula- 
tions of Bishop and Saltiel for N = 32 steps. 

Dimension A, (exact) A, (numerical) 

2 0.333 0.321 iO.035 
4 0.273 0.266 f 0.038 
5 0.259 0.268 f 0.009 
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In the present work, we also discuss the shapes of ring polymers in high spatial 
dimensionalities where explicit formulae for the principal components of the radius 
of gyration are derived. Our earlier work (Rudnick et a1 1987) on linear chains showed 
that when the dimension d is much greater than the number of steps N, the overwhelm- 
ing preponderance of walks are of one class-those for which the walker chooses a 
different orthogonal direction at each step. All walks of this type are topologically 
equivalent which makes an average over configurations trivial. We were able to obtain 
exact analytical expressions for the principal radii of gyration. For the largest com- 
ponents, (R;), to order l/d, 

l S n s N + l  
otherwise. 

Notethat(R:):(R:):(R:)= l : i :$=9:2 .25:  1,and theseratiosareclose to what is found 
for the ratios of components in three dimensions for unrestricted walks (Solc 1973). 
Thus, the walks of linear chains retain their prolateness, independent of spatial 
dimensions. In the case of rings, the situation is more complicated because the walks 
belonging to the class that predominate in the infinite-dimensional limit are no longer 
topologically equivalent. Nevertheless, as reported in the next section of this paper, 
exact expressions for the average principal components of the radius of gyration have 
been found for this case as well. Our result is, remarkably, that the components are 
doubly degenerate with values a quarter of those of the linear chain, i.e. 

f [ (  N +  1)/.rr2n2](two-fold degenerate) 1 s n s ( N +  1)/2 
otherwise (1.3) 

with the ratios for the three largest being (R:) : (Ri) : (R:) = 4:  4 : 1. Ring chain polymers 
become oblate in high dimensions. A tendency toward oblateness with increasing 
dimensionality is evident in the numerical calculation of Bishop and Saltiel. 

The results for high-dimensional walks that were presented above and that will be 
described in more detail below are obtained using a new analytical method which is 
both simple and particularly well suited for developing a l / d  expansion. When applied 
to walks in three dimensions, the analytically derived formulae for both linear and 
ring chains, which are accurate to the two lowest orders in a l / d  expansion, are in 
very close agreement with the results obtained from numerical simulations (Bishop 
and Saltiel 1986, Bishop and Michel 1986). In the final section, we demonstrate how 
a l / d  expansion can be used to calculate the probability distribution function of the 
individual principal radii of gyration Phi (R:) order by order in 1/d, directly. A closed 
form expression for PN(R;) is obtained by summing select terms to all orders in l /d .  

2. Asphericity of ring polymers 

The gross shape of a long flexible polymer can be characterised by ensemble averages 
of the invariants of the radius of gyration tensor 7 of the trail left behind by an N-step 
random walker (Theodorou and Suter 1985, Rudnick and Gaspari 1986, Aronovitz 
and Nelson 1986). The elements of ? are given by (Solc and Stockmeyer 1971, Solc 
1971) 

1 N + I  
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where xi,  is the ith component of the position vector of the fth vertex in the walk and 
( x i )  is the average over the walk., The average radius of gyration (R’ )  is the trace ti: 
and the principal components of (R’) or the squares of the principal radii of gyration 
for a d-dimensional random walk are the eigenvalues A I ,  A’, . . . , A d  of The aspheric- 
ity, which measures the deviation from sphericity of the average shape of the trail, is 
defined by equation (1.1). At this point, the walk can be either unrestricted or 
self-avoiding. However, for d > 4, the averaging yields results for the two that are 
indistinguishable. We treat only unrestricted walks here or, equivalently, polymers 
without excluded volume. 

It proves convenient to change coordinates from the position vectors of the N + 1 
vertices, x,, to N displacement vectors, qm, connecting the a t h  and ( a  + 1)th vertices. 
These vectors will be referred to as links or bonds which represent polymer segments 
composed of a large number of monomer units (Kuhn 1934, Flory 1971). It is 
straightforward to show that the radius of gyration matrix, when expressed in terms 
of the displacement factors qO, becomes (Kramers 1946, Fixman 1962, Forsman and 
Hughes 1963) 

N 

0 ,p  = 1 
TJ = aO,TOITpJ 

where amp is a real symmetric matrix with elements 

1 
( N + 1 ) 2  

a,p =- a ( N +  1 - p )  

The matrix app is identical to the radius of gyration tensor for a chain walk in infinite 
dimensions encountered previously (Rudnick et al 1987). We defer discussing the 
reason for this correspondence until the next section. 

are easily calculated for unrestricted 
walks. In this case, the probability distribution function P (  vu,) for the chain segments 
T,, can be taken to be Gaussian in the limit of large N >> 1 (Kuhn 1936, 1939, Flory 
1971): 

The ensemble averages of the invariants of 

with d being the number of spatial dimensions. The normalisation 
the average length of a link is unity, 

d c ( v i , ) =  1. 
i = l  

Before proceeding to the calculation for rings, we rederive known 

(2.4) 

is chosen so that 

(2.5) 

results for linear 
chains to demonstrate the ease with which the averaging procedure can be carried out 
using the coordinates T ~ ~ .  

Since linear chains correspond to open random walks, the displacements corre- 
sponding to different links are statistically independent, thus 
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We will find that equation (2.6) does not hold for polymer rings because the fact that 
the random walk is closed introduces a constraining relationship among the displace- 
ment vectors. The displacements cease to be independent. 

The calculation of the asphericity proceeds in a straightforward manner using the 
expression 

[( TI 1 TI I )  - ( 7-1 1 7-22)] + d ( 7-1 2 7-12) A -  
d - [( T,, 7 - 1 1 )  - (7 -1 ,  7-22)] + d( 7-11 7-22) 

The averages are easily evaluated. To compute 

( 7-;J = c aapays(77a 177s 177yl77Sl)  
4 Y S  

2.7) 

2.8) 

only the terms a = /3, y = S; a = y, /3 = 8; a = 6, /3 = y need be considered, the other 
terms being smaller by at least 1 /  N. Thus, 

1 
d (T;l)=,[(Tra")2+2Tra"2]. (2.10) 

The eigenvalue spectrum of the matrix a" is well known (Fixman 1962, Forsman and 
Hughes 1963, Rudnick et a1 1987) and in the large-N limit, Tr(a") =bN and Tr(H2) = 
&N2 yielding 

( 7-1 I 7-1 1) = ( N2/d ')(&+ 6) = N2/20d2 

Similarly, it is found that 

(2.11) 

and 

(2.13) 

On substituting these averages into (2.7), the general expression for Ad, we recover 
the known result for linear chains: 

Ad =2(d+2) / (5d+4) .  (2.14) 

When performing the averages in the case of rings, the requirement that the walks 
close on themselves introduces a global correlation between displacement components 
corresponding to different links which must be taken into account. The coordinates 
are no longer independent; they must satisfy the following equation of constraint for 
each walk in the ensemble: 

(2.15) 
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The correlations between displacement components belonging to different links 
can be found directly from the constraint equation by squaring equation (2.15) and 
taking averages, 

(2.16) 

It is important to realise that the correlations induced by the equation of constraint 
do not arise out of dynamical interaction between links, and consequently (77,,778t) is 
not expected to depend on the location of the a th  and Pth links. Thus equation (2.16) 
reduces to 

(77ot77pr) = -1/Nd a + P  (2.17) 

for large N. This result can be derived directly using the Gaussian distribution function 
for the links and taking into account the linear dependence of the coordinates through 
the constraint equation. The correlations for rings as expressed in equation (2.17) was 
first derived by Kramers (1946). Correlations between squares of 77 also occur in the 
averages needed to calculate Ad and by a similar argument they are found to be 

( 7 7 0 t 7 7 p t ~ y , 7 7 s ~ )  = 31 N 2 d 2  (2.18) 

where a, P, y and S are different. Now we proceed with the calculation. The analysis 
for rings follows the same procedure described above for chains, but we must be 
mindful of the correlations. As an example, the average radius of gyration is given by 

which, on using (2.17), becomes 

(2.19) 

(2.20) 

Note that the last term is not present for open walks. In the continuum limit Zo aaor = 
N / 6  and X m , 8  aap = N2/12 which yields the well known result (Kramers 1946, Zimm 
and Stockmeyer 1949) 

( R 2 ) =  NI12 for polymer rings. (2.21) 

After a straightforward but slightly more involved calculation, our results for rings, 
again in the N + M limit, are 

7 N2 
(5)(144) d 2  (Tl,Tll)=- - 

1 N2 
(5)(144) d 2  (TnT12)=- - 

1 N2 
(T,1T2*)=-- (144) d 2  

which leads to the following analytical expression of Ad for rings: 

d + 2  
5 d + 2 '  

Ad =- 

(2.22) 

(2.23) 

In infinite dimensions, Ad .j for rings. While Ad decreases with increasing dimension, 
it is misleading to immediately conclude that the shape of the walk becomes more 
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'spherical'. A deeper understanding of this trend and further insight regarding the 
anisotropy of the average shape of high-dimensional walks is gained by investigating 
the individual eigenvalues of 7 and their probability distribution function. While this 
is an apparently intractable analytical task for finite dimensions the eigenvalues can 
be calculated to arbitrary accuracy in high dimensionality. Indeed, we have been able 
to extract exact results for the individual components of ( R 2 )  for both linear chain 
and ring chain polymers as d + CO, which we now discuss. 

3. The shapes of random walks and the l / d  expansion 

We undertake our study of the shapes of open and closed random walks in terms of 
the eigenvalues of the matrix, by considering the analytic structure of the resolvent 
function, R ( A ) ,  

R( A )  = Tr (n) 1 
AZ-T 

of the complex variable A. The matrix I" is the identity operator. If the eigenvalues 
o f t h e d x d  matrix F a r e A j ( l S j S d ) t h e n  

d 1  
R(A)  = -. 

j = 1  ( A  - A j )  (3.2) 

The function, R ( A ) ,  thus has poles at the eigenvalues of F. In the case of a real, 
symmetric matrix which is of interest here, all the A are real. Using 

1 
x-iE 
~- - P (  l / x )  + .rriS(x) (3.3) 

where P represents a principal value, E is a positive constant and x is real. This means 
that, when A is real, the imaginary part of the resolvent is the eigenvalue distribution 
of the matrix T: 

d 

Im[R(A - ~ E ) ] = T  6 ( A - A j ) .  (3.4) 
j = 1  

Our goal is to obtain results for the average over ensembles of random walks of R(A) ,  
which is denoted (R(A) ) .  The imaginary part of ( R ( A ) )  is the ensemble average of the 
probability distribution of eigenvalues of We treat the cases of open and closed 
walks separately. 

3.1. Shapes of open walks 

Consider the formal expansion of R(A)  in powers of F :  

R(h)=Tr-----s;=Tr- 1 ' [  1+ (f) - +-+ T: ...I 
AT-T A 

and 
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Utilising (2 .2)  we obtain 

W T " )  = C E ( ~ ~ , r l a ~ l ~ l ~ ~ l ~ 2 ~ u 2 i 2 a a 2 ~ 2 ~ ~ 2 ~ ~  * * * T a . i n a a , P n 7 p n ~ l ) .  (3.7) 
a l P l r l  1. 

ad% 

The matrices aUkP, are the same for every N-step random walk. The averages are thus 
over the 7. Recalling (2 .6 )  

1 
( ~ a t ~ p , )  = d S a p S , .  (3.8) 

Since the distribution of the 7 is Gaussian we also have, as a generalisation of (3.8), 

(3.9) 
and, in general, the average of a product of 2m 7 will equal a sum of products of the 
average of m pairs of 7. The sum is over the (2m)! /2 '"m! distinct ways of constructing 
m pairs of the 2 m  7. 

It is possible to formulate a diagrammatic method to keep track of the pairings of 
7. This method will be used to systematise the l / d  expansion but its utility goes much 
beyond that. It provides a powerful graphical technique for summing classes of terms 
to all orders in l / d  in the same spirit as the Feynmann graph technique used in 
perturbation theory. This aspect of the method will be used when we extract an 
approximate analytic expression of the distribution function of eigenvalues of 7 directly 
from (R(A)). Consider the diagrammatic representation for the quantity ( ? / A ) * :  

( 7 u I  i I  7 u 2 1 2 7  e 3 i 3 7 u 4 t 4 )  = ( T a l , ,  ~ u 2 1 2 ) ( 7 u 3 , 3 7  u4i4) 

+ (7 u l i l  7 u 3 i 3 ) ( ~  u 2 i 2 7  a4i4) + (7 e,zl 7e4i4)(7 a 2 i 2 7  a l l 3 )  

(3.10) 

U 2  P 2  

which is displayed in figure 1. The crosses at the ends of the horizontal lines represent 
7 and the lines themselves stand for sup. The dot between the two adjacent crosses 
in the centre is for accounting purposes only. The nth-order term (T/A)" is represented 
by a string of lines with crosses at both ends, as shown in figure 2.  

A new element is now introduced in the diagrammatic method: the representation 
of the Gaussian pairing of two 7. Pairings like these are symbolised by drawing two 
lines between them. For example, if the adjacent 7 in figure 1 are paired under 
averaging, two lines are added to the dot between, as shown in figure 3 .  This diagram 

Figure 1. The diagrammatic representation of the right-hand side of equation (3.10). The 
text immediately below the equation contains a detailed discussion of the meaning of the 
various elements in the diagram. 

M xi-% %-X* * 0 4  0- 

Figure 2. The diagrammatic representation of ( ? / A ) " .  

Figure 3. The representation of the pairing of two adjacent I). See the text above equation 
(3.11). 
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represents 

a2P2 

(3.11) 

Notice that S i z i 2 ,  the delta function for the components of the 7, is automatically 
satisfied for the two adjacent 7. This guaranteed satisfaction of the delta function for 
components occurs whenever two adjacent 7 are paired. It does not occur when two 
non-adjacent 7 are paired. This turns out to be the basis of the l / d  expansion. An 
expansion up to nth order will result when account is taken of up to 2 n  pairings of 
non-adjacent 7. 

Let us start with the lowest-order term in the expansion, the term of zeroth order 
in l /d.  For the time being, we restrict our analysis to open random walks. The 
modifications entailed by the constraint (2.17) on the 7 in closed walks will be addressed 
subsequently. Consider Tr( ?/A)",  the nth-order term in the summation in (3.5). This 
term is represented as the ring diagram displayed in figure 4. The large dot that 
separates the crosses representing the 7 at the two ends of the right-hand side of (3.7) 
is, like the other dots in the diagram, for accounting purposes. The zeroth-order 
contribution to (Tr( T/A)") is obtained by pairing off adjacent 7 only. The diagram 
representing this pairing is shown in figure 4(6). This diagram represents 

(3.12) 

. * * .  . * * . *  
0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

- 
( a )  ( b )  

Figure 4. ( a )  The representation of Tr( T/A)". ( b )  The representation of the lowest-order 
contribution to (Tr( T/A)"). 
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Hence, to zeroth order 

(Tr(f)")=Tr(:)" 

and 

1 
+O( l / d ) .  

1 
( A I  - T )  

(3 .13)  

(3.14) 

The ensemble average of the eigenvalue distribution of T is therefore given by 

R ( A ) = C  6(A -a i )+O( l /d )  (3 .15)  

where ai is the ith eigenvalue of a". Thus, for open walks in infinite spatial dimensions, 
the average principal components of the radius of gyration are precisely the eigenvalues 
ai of the matrix a", as already noted. The largest eigenvalues a, are given approximately 
by N /  .rr2i2.  The eigenvalues of 7 for open chains in infinite dimensions were derived 
previously using a discrete lattice representation for the random walk and averaging 
over only those walks that predominate when d >> N (Rudnick et a1 1987). The 
derivation presented here clearly demonstrates that, as long as the number of steps in 
the walk is large ( N  >> l ) ,  the discrete or the continuous versions of the random walk 
lead to identical results to leading order in N. In other words, the results hold 
independent of order of the limits N + 03, d +CO. 

We now turn to the next term in our l / d  expansion. This term arises by considering 
the contribution to (Tr( ? / A ) " )  that arises from two pairings of non-adjacent 7. 
Consider two sets of adjacent 7, such as shown encircled in figure 5(a).  To enumerate 
diagrammatically the different ways in which the four 7 in these two sets can be paired, 
we bring the four 7 together, as shown in figure 5( 6). The three ways of pairing them 
are displayed in figures 6(a)-(c).  The pairing in figure 6(a)  is just the pairing of 

I 

0 .  

( a )  ( b )  

Figure 5. ( a )  Two sets of 1) in the diagrammatic representation of ( T/A)", shown encircled. 
( b )  The two sets are pulled together as a preliminary step in the pairing of non-adjacent 9. 

x*- *x  x* - *x  x* - *x  

x = x  \ /  \ /  x x  \ /  
?y? 1.1 1.1 

e*--)( - 0 .  00- =-** 0.- \)t-** 

( a )  ( b )  ( C )  

Figure 6. ( a ) - ( c )  The three ways of pairing the four 1) brought together in figure 5 ( b ) .  
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adjacent 7 that led to our zeroth-order result. The two other pairings are new. If the 
remaining pairings are all of adjacent 7, the first-order contribution in l / d  to (Tr( T / A ) " )  
is obtained. 

Suppose now that all the 7 are paired as indicated above in the calculation of 
(Tr( ? /A)" ) ,  two sets of 7 being paired as shown in figure 6( b) .  Take the leftmost of 
this mutually paired set to be the kth from the large dot in figure 4(a), counting 
clockwise, and the rightmost to the (k + m)th from the large dot. Careful consideration 
of the effects of the delta functions generated by this pairing yields, for its contribution 
to (Tr( T/A)'), 

d Tr (:) Tr (f) '-". (3.16) 

Rewriting this in terms of sums over the eigenvalues of a" we have 

To complete the calculation of the effect of this O ( l / d )  contribution to Tr(T/A)" we 
sum over all locations of the two sets of non-adjacent 7. This sum, applied to (3.17), 
yields 

n(n-1)  
2 d i t j  m = l  2d 

(3.18) 

The contribution to Tr( T/A)" of the pairing in figure 6( c), all other pairings being 
of adjacent 7, can also be extracted by looking carefully at the delta functions generated 
by the Gaussian averages. One finds that this contribution is 

(3.19) 

for a given k and m. Summing over all k and m and adding this to (3.18) we obtain 
for the total first-order contribution to Tr( T/A)" 

(3.20) 

and summing over all n yields the first-order contribution to ( R ( A ) ) .  The summations 
are straightforward variations of geometrical series. Using 

and 

we arrive at the following result: 

(3.21) 

(3.22) 

+- (3.23) a: 
) + 0 [ ( 3 ' ] .  

1 1  a, a, -+- 
A -aa, d ( A  -a,)*(A -CY,) d ( A  

( J f l )  
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This is our complete result for the resolvent to first order in l / d .  It does not match 
the simple analytic form (3.2) for the unaveraged resolvent. We can, however, interpret 
the two O ( l / d )  contributions to ( R ( A ) )  in terms of an O ( l / d )  shift in each average 
eigenvalue and an O ( l / d )  contribution to the width of the eigenvalue distribution 
about each average. To see this, suppose that each eigenvalue A; of a given T is written 
A i  = a j ( l  + A A ; ) ,  where AA; represents the fractional difference between A ;  and its 
zeroth-order value a,. Then 

(3.24) 

In the light of this we see that, according to (3.24), at order l / d  there is a fractional 
shift in the eigenvalue of .f: equal to 

CYj 1 CYj %- 2 1 
( A A ; ) = -  

d j A i - a j  d j “;-a;. (3.25) 
j # i  j # i  

and a width to the distribution about this new average given by 

( A A f ) = 2 / d .  (3.26) 

In other words, to order l l d  

i + j  

N i 2  -- - T 2 i 2 (  1 + F I T )  

=-(I+;) N 

where the result 

2 n 2  3 
m = l  m 2 -  n 2 -  4 
m # n  

has been used. We also have to order l / d  

(3.27) 

(3.28) 

(3.29) 

The final results for open walks summarised in equations (3.25)-(3.29) are not new; 
they were derived in our earlier work (Rudnick et a1 1987) by a more cumbersome 
method. The diagrammatic method discussed in this section is by far the more powerful 
calculational procedure. We now apply it to the case of ring polymers where the results 
to be obtained are new. 
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3.2. The shapes of closed walks 

The development of the l / d  expansion set forth in the previous section can be applied 
straightforwardly to closed walks. The principal modification for these walks arises 
from the constraint (2.15) which translates into the following result for the average of 
a product of two r): 

(3.30) 

Equation (3.9) and its generalisation holds for the average of products of r). Thus the 
zeroth order in d result for (Tr( T/A)") is obtained as before by pairing the adjacent 
r) but, because of (3.30),  we now have 

( V m , i v p J )  = (l /d)[SapSij  - S i j /  NI. 

1 
A "  

=-Tt-[a"(I"-+)(+I)]" ( 3 . 3 1 )  

where I" is the identity and the N x 1 vector I+) has all its elements equal, i.e. 

+, = 1/m. (3.32) 

The problem of evaluating the trace of the product a"( I" - \$)($I) can be solved 
once the eigenvalues of that operator are known. The equation satisfied by an eigenvec- 
tor of a"( I"- [+)($I) is 

( 3 . 3 3 )  

In the appendix we show that the eigenvalues A are doubly degenerate, with values a 
quarter those of a" alone. In the large-N limit, the largest eigenvalues are 

a"( I"- I+)($LI)I4) = 44) .  

N + l  
A m = -  

4 v 2 m 2  
1 s m s ( N +  1 ) / 2  (3.34) 

and each is twofold degenerate. 

lowest order in l / d ,  we have 
The l l d  expansion for closed walks is performed exactly as for open walks. At 

( 3 . 3 5 )  

where 

N + l  N + l  N + l  
P 3  = P 4  =- 9 P 2 k - 1  = P 2 k  ==. (3.36) P , = P * = -  4 v 2  ' 1 6 ~ '  ' ' ' ' 

The eigenvalues of the ti. matrix are, to lowest order in l / d ,  doubly degenerate. One 
might therefore say that ring walks in very high dimension ( d  + co) become oblate. In 
this limit, the ratios of the three largest principal components of the radius of gyration 
are 

(3.37) 

This is in contrast to the situation for linear chains whose shapes remain prolate in 
high dimension. 

( R : )  : ( R ; )  : ( R i )  = 4 : 4 : 1 .  



3406 G Gaspari, J Rudnick and A Beldjenna 

At next order, the double degeneracy adds a few extra complications to the 
calculation that can, however, be easily overcome and one finds the following shift in 
each of the eigenvalues: 

(3.38) 

The double degeneracy in the eigenvalue structure of ? is not split on the average, at 
least to O ( l / d ’ ) .  The width in the eigenvalue distribution about each average eigen- 
value is calculated to be 

( A 2 k - i  - ( A 2 k - i ) ) * =  ( A 2 k  -(h2k))’=3PZk/d. (3.39) 

These results allow for a detailed comparison with recently reported numerical studies 
of the average shapes of linear and ring chain polymers (Bishop and Saltiel 1986, 
Bishop and Michel 1986). 

3.3. Comparison with numerical simulations 

The expressions for the average individual principal components of the radius of 
gyration and the width of their distribution obtained in the previous sections allow us 
to derive analytical expressions for various parameters introduced to characterise the 
dimensions and shapes of polymers. Obviously, our analytical formula will only 
represent the first two terms in a l / d  expansion. But for some cases, the l / d  expansions 
terminate after the first or second term and the analytical results will be exact. Examples 
of quantities which have expansions that terminate are ZfZl  (hi) and Ei# j , i J  (,&A,). In 
other cases, however, where the l / d  series does not terminate, our results will of course 
be asymptotically correct as d + CO but, as we will see, they also reproduce the numerical 
calculations remarkably well in three dimensions, the error being of the order of 5%. 

To test the feasibility of applying a l / d  expansion to predict the shape features of 
three-dimensional walks let us consider the asphericity parameter defined in equation 
( 1 . 1 ) .  A useful way to rewrite this equation for the purposes of a l / d  expansion is 

(3.40) 

The expansion of Ad to first order is easily carried out for both open and closed walks 
utilising the expressions for the average eigenvalue shift and their respective widths 
derived earlier. To first order 

Ad =$+ 12/25d + O ( l / d ’ )  (3.41) 
for linear chains and 

A d  = f + 8 / 2 5 d  + O( 1 / d ’) ( 3  -42) 
for rings. In three dimensions, Ad = 2 = 0.56 and = 0.307 for linear chains and rings, 
respectively, while the exact expressions for Ad obtained in 8 2 yield Ad = % = 0.525 
for linear chains and Ad = = 0.294 for rings. The error in the l / d  expansion is slightly 
more than 6% for linear chains and slightly less than 5% for rings. 
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The above expansions for Ad, equations (3.41) and (3.42), could have been obtained 
directly from the exact formulae. However, another paramater that characterises the 
shape of the random walk which is similar to Ad and in some ways a more appropriate 
definition of the average asphericity of the walk is 

(3.43) 

Note that the averaging procedure specified by (3.43) differs from that needed to 
calculate Ad. The calculation of ( A d )  requires that the ratio be averaged whereas the 
numerator and denominator are averaged separately in the calculation of Ad. Unfortu- 
nately, the averaging procedure needed to calculate ( A d )  cannot be carried out exactly 
as was the case for Ad. However, a l / d  expansion can be carried out. Once more, 
using the results previously derived and carefully expanding in powers of l /d ,  the 
zeroth- and first-order terms are found to be 

(Ad)=$-  12/175d + O ( l / d z )  

and (3.44) 

(Ad)=; -  32/175d -to( 1/d2)  

for open walks and closed walks, respectively. The numerical values for d = 3 are 
( A d )  = 0.377 for linear walks and ( A d )  = 0.261 for ring walks. Recent simulations by 
Bishop and Michel (1986) give (Ad)=0.39*0.004 for linear walks and ( A d ) =  
0.252*0.02 for ring walks. Again, the percentage error is of the order of 5%. It 
appears that the first few terms in a l / d  expansion give remarkably accurate results, 
even for three-dimensional walks. The techniques can be used to generate a l / d  
expansion and thereby derive analytical expressions for various parameters useful in 
describing the average shape of random walks and which are not amenable to exact 
analytical analysis-(Ad) is one such parameter. 

The expansion method as developed in this section can be used to go beyond 
merely calculating various low-order moments of the eigenvalues, important as these 
quantities are. In the next section we will show how the method can provide information 
regarding the distribution of individual eigenvalues directly-a result which is the 
ultimate aim of any theory of random walk shapes, but which has apparently eluded 
accurate analytical analysis since the original work of Kuhn in 1934. 

4. The principal radius of gyration probability distribution of an open walk 

An approximate result for the full distribution of an individual principal radius of 
gyration is obtained by summing an infinite set of contributions in the I / d  expansion. 
Recall the derivation of the first-order terms to the average resolvent, carried out in 
§ 3. The pairing displayed in figures 6 ( b )  and 6(c)  generated contributions to that 
average that were of order l /d .  Furthermore, for non-adjacent 7 that were paired for 
a given location in the chain, each pairing gave rise to one term that, except for the 
factor l /d ,  was of exactly the same form as the lowest-order contribution (Tr( T/A)"). 
It can be verified that for any number of pairings involving non-adjacent 7, there will 
be one and only one contribution to (Tr( T / A ) " )  that looks exactly like the zeroth-order 
one, except for factors of l / d  raised to an appropriate power. The sum that we will 
perform is over all such contributions. 
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The task that remains is to count up the number of ways of pairing non-adjacent 
7. We start by defining an irreducible pairing among the 7 in the sets of n adjacent 
7. Consider for example the three sets of 7 in a chain, shown encircled in figure 7 ( a ) .  
The chain is 'bent' so that pairs are moved near to each other as in figure 7( b ) .  Figure 
8 ( a )  displays an irreducible pairing of the six 7 in the three sets and figure 8 ( b )  
displays a reducible pairing of these six 7. An irreducible pairing of the 7 in a group 
of n sets cannot be broken down into pairings between 7 in groups of n and n - m 
sets in which no pairings exist between an 7 in one group and an 7 in the other. The 
number of ways of effecting an irreducible pairing of 2j 7 in a group of j sets is 

n, = 2Jj! /2 j .  (4.1 ) 

We obtain (4.1) by the following argument. First symbolise each set by an integer that 
goes from 1 to j .  The order of the 77 in each set is important. Represent it by placing 
a bar over the integer if the order is reversed. A given irreducible pairing will be 
represented by a permutation of the integers with or without bars over them. For 
example, when j = 4, the sequence 

1234 

stands for the pairing in which the second 7 in the first set is paired with the second 
7 in the second set, the first 7 in the second set is paired with the first 7 in the third, 
the second 7 in the third set is paired with the first 7 in the fourth set and the second 
7 in the fourth set is paired with the first 7 in the first. The diagram corresponding 
to this pairing is displayed in figure 9. The order of the 7 in each pair in that figure 
is their order in the chain, from left to right, when the chain is stretched out. While 
we naively count 2Jj! ways of permuting the j integers and either putting bars on them 

.. 
i i -*at-** 

- 4 C . H  * j +  . . *  

( b )  

Figure 7. ( a )  Three sets of q in the diagrammatic representation of (T/A)", shown encircled. 
( b )  The three sets are pulled together as a preliminary step in the pairing of the q in the sets. 

o m  
o m  

Figure 8. ( a )  The irreducible pairing of the q in the three sets brought together in figure 
7 ( b ) .  ( b )  A reducible pairing of the q in these sets. See the discussion above equation (4.1). 
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0 .  0 .  

Figure 9. The pairing represented by the sequence 1234. See the discussion following 
equation (4.1). 

or not, more careful inspection reveals that this overcounts the pairings by 2j. First 
one obtains the same pairing if the order of the integers is reversed and bars are placed 
over unbarred integers while the bars are removed from those that were originally 
barred. Furthermore, a cycling of the integers (i.e. 123+231+321) also leads to 
identical pairings. 

The pairing above brings with it a factor of ( l / d ) ] - '  because all of the 2j  77 must 
have the same component index. To complete our derivation of the contribution of 
all irreducible pairings in a group o f j  sets to (Tr( T/A)"), the number of ways in which 
such a group can be formed must be counted. A straightfoward combinatorial analysis 
yields for this number 

n!/j!(n -j)! .  (4.2) 

If the remaining pairings are all between 77 in the same set, we are left with the following 
contribution of the above irreducible pairing to (Tr( T/ A ) " ) :  

J - '  n! 2'j! n! 1 
(n - j ) !  j 

As a means of simplifying accounting we use the identity 

so that 

(4.3) 

(4.4) 

It is a useful exercise to check that when j = 2 (4.5) reproduces the second contribution 
to (3.20). 

The final piece of accounting needed is to calculate the effect on (Tr( T/A )") of n2 
irreducible pairings among the 7 in two sets, n3 irreducible pairings in three sets, and 
so on. Combinatorial analysis yields for this 

Summing on nj gives 
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and, in summing over n, 

(4.8) 

The imaginary part of the average of the resolvent function as defined by (3.4) is the 
eigenvalue distribution. Since 

= i&(A -a i r )  (4.9) 
1 

A --&-air 
Im 

we pick out one of the delta functions in (4.9) and associate it with a given eigenvalue 
of This means that the distribution of that eigenvalue is given by 

t = l  

--+iw(A -a , t )  dw 
j dtJ 3 

=‘[l 2T e x p [ - ~ l n ( l + ~ ) + i w A ]  dw. (4.10) 

When the dimension d is sufficiently large the integral over w in (4.10) is well 
approximated by a steepest descents result. Solving for the extremum in the exponent: 

(4.11) 

and performing the Gaussian integration about that extremum gives for the eigenvalue 
distribution 

P(A,)aAP”-’ exp(-dA,/2a,). (4.12) 

averaged over random walks, This distribution function for the ith eigenvalue of 
predicts i, = a,, i.e. 

Thus it reproduces the zeroth-order result for the average. Furthermore 

( A i  - X i ) ’ = ( 2 / d ) a :  

(4.13) 

(4.14) 

in accord with the first-order result for the width of the distribution, as obtained in 0 3. 
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Recall that the distribution function P ( A , )  is the distribution function for the ith 
principal radius of gyration R f  and therefore the combined probability distribution 
function for the principal radii of gyration is 

N 

W ( A I . .  . A N )  = n P(A , ) .  
i = l  

(4.15) 

The distribution for the radius of gyration itself is 

W ( R 2 ) =  S ( R 2 - A 1 . .  . - A N )  W ( A l . .  . A N )  d A l . .  .dAN. (4.16) i 
Using (4.16) and the integral representation of the delta function, (4.16) can be 
expressed as 

W (  R 2 )  = - eisR2K (s) ds 
2T ‘I 

where 

(4.17) 

(4.18) 

and a,  = N / T 2 n 2 .  
The integral expression for the distribution function of the radii of gyration is an 

exact result, first derived by Fixman (1962). Our analysis goes beyond this and provides 
an analytical form for the distribution of the individual principal components of the 
R 2  themselves. Thus although equation (4.10) is an approximate expression for P(R: )  
it recovers the exact result when combined to form the distribution of the radius of 
gyration. 

To determine the accuracy of equation (4.12), we have performed simulations to 
obtain a distribution of the largest eigenvalue of the matrix for a 100-step walk in 
three dimensions and compared it with the predicted distribution 

(4.19) 

with a1 = N I T 2  = 1001 n-’, C being a normalisation constant and A ,  denoting the largest 
eigenvalue. 

The distribution for the largest eigenvalue obtained numerically for a sample of 
10 000 walks is plotted in figure 10. The smooth curve, also shown in figure 10, is the 
predicted distribution of (4.19). The constant C was adjusted to match the maximum 
amplitude of the theoretical curve with that of the numerical curve. The agreeement 
between the two curves is remarkably close. 

Unfortunately, the method used to find the eigenvalue distribution for open walks 
apparently cannot be applied straightaway to the case of rings. Here, the degeneracy 
of the eigenvalue distribution at low order in 1/ d complicates the analysis. The present 
state of affairs is unsatisfactory and more needs to be done before the ambiguities 
associated with this intriguing but troubling property of the shape distribution for 
closed walks can be definitely resolved. 
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h 

Figure 10. A comparison of P ( A )  as given by equation (4.19) for the largest eigenvalue 
with the numerically generated distribution obtained from ten thousand 100-step walks. 
The vertical line indicates the location of the average eigenvalue obtained numerically. 
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Appendix 

In this appendix we show that the eigenvalue spectrum of the matrix Z(Z-lqb)(qbl), 
where the N x N matrix a" is defined in (2.3) and the N-component vector 14) is given 
by 

is doubly degenerate with values 

A,,, = N / 4 r 2 m 2  1 s m s N / 2  (AI) 

in the limit of large N. 

of the matrix 8. The components of the nth eigenvector are 
As a first step to solving this problem, we recall the eigenvalues and eigenvector 

+ , , ( i )  = (G)"2 2 sin (*) 1 s i, n 6 N +  1 
N + l  

with eigenvalues 
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The largest eigenvalues are well approximated by N / r 2 n 2  for N >> 1. It can be verified 
that in this limit 

Now, the equation satisfied by an eigenvector of a"( I" - I$)($I) is 

EI4)-14)($14)=AI4). ('44) 

If ($ 14) = 0 and 4) is an eigenvector of a", it is also an eigenvector of a"( I" -I$)( $ 1 ) .  
From (A3), it is clear that all the even eigenvectors of a", I$k) satisfy the above two 
requirements. n u s  an infinite set of eigenvalues of a"( I" - I+)(+[) is 

A k  = N / 4 r 2 k 2 .  (A51 

The other eigenvectors of the operator can be expanded as linear combinations of 

I4")=c (CTI$Zk+l). (A6) 

the I$,,) with odd n. That is, each eigenvector 14'") in the new set can be written as 

k 

The coefficients are determined from the eigenvalue equation to be 

Multiplying by ($I$2k+l) and summing over k gives rise to the following self- 
consistency equation: 

The equation which determines the other set of eigenvalues A, is thus 

Using (A3) and the relation 

we find that equation (A10) is satisfied when 

(N/41l,,,)~" = mrr 

or when 

A, = N / 4 r 2 m 2 .  (A131 

Comparing this with our previous result, (A5), we see that the eigenvalues of 
E(  - l$)(91) are all doubly degenerate. 
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